Objects

Functionality

Libraries

Availability

Examples

Contributors

Hilbert series (Mathematical background)
Compute the (first and second) Hilbert series of a homogeneous ideal.

Twisted cubic in P3 : V = ( xz-y2=0 , xw-yz=0 , yw-z2=0 )

ring r=0,(x,y,z,w),dp;
ideal i=xz-y2,xw-yz,yw-z2;
i=std(i);
hilb(i);
==> 1 t^0
==> -3 t^2
==> 2 t^3
==>
==> 1 t^0
==> 2 t^1
==> codimension = 2 dimension = 2 degree = 3

1st Hilbert series: Q(t) = 1-3t2+2t2 , 2nd Hilbert series: P(t) = 1+2t .

This result can be used to compute the Hilbert polynomial H of M = K[x,y,z,w] / I :

$\displaystyle P(t) = \sum_{j=0}^N a_j\cdot t^j \;\; \Longrightarrow \;\;
H(t)=\sum_{j=0}^N a_j \cdot\binom{\dim(I)+t-j-1}{\dim(I)-1} $

intvec a=hilb(i,2);
ring s=0,t,ls;
poly h; int j;
for (j=1; j<=size(a); j=j+1){h=h+a[j]*(t-j+2);} h;
==> 1+3t

Hilbert polynomial: H(t) = 1+3t .


Valladolid (Spain) 5-00 http://www.singular.uni-kl.de