Objects
Functionality
Libraries
Availability
Examples
Contributors
Compute the normalization of the following subvariety of
P8
( K = Z/32003
Z )
V = { wy-vz=0 , vx-uy=0 , tv-sw=0 ,
su-bv=0 , tuy-bvz=0 }
LIB "normal.lib";
ring r=32003,(b,s,t,u,v,w,x,y,z),dp;
ideal i=wy-vz,vx-uy,tv-sw,su-bv,tuy-bvz;
list NN = normal(i); // takes about 6 sec
==> 'normal' created a list of 3 ring(s).
NN[1];
==> // characteristic : 32003
==> // number of vars : 6
==> // block 1 : ordering dp
==> //
: names T(1) T(2) T(3) T(4) T(5) T(6)
==> // block 2 : ordering C
def R1=NN[1]; | |
def R2=NN[2]; | |
def R3=NN[3]; |
setring R1; | |
setring R2; | |
setring R3; |
norid; | |
norid; | |
norid; |
==> norid[1]=0 | |
==> norid[1]=0 | |
==> norid[1]=wy-vz |
==> | |
==> | |
==> norid[2]=ty-sz |
==> | |
==> | |
==> norid[3]=wx-uz |
==> | |
==> | |
==> norid[4]=vx-uy |
==> | |
==> | |
==> norid[5]=tx-bz |
==> | |
==> | |
==> norid[6]=sx-by |
==> | |
==> | |
==> norid[7]=tv-sw |
==> | |
==> | |
==> norid[8]=tu-bw |
==> | |
==> | |
==> norid[9]=su-bv |
normap; | |
normap; | |
normap; |
==> normap[1]=T(1) | |
==> normap[1]=T(1) | |
==> normap[1]=b |
==> normap[2]=T(2) | |
==> normap[2]=0 | |
==> normap[2]=s |
==> normap[3]=T(3) | |
==> normap[3]=T(2) | |
==> normap[3]=t |
==> normap[4]=0 | |
==> normap[4]=T(3) | |
==> normap[4]=u |
==> normap[5]=0 | |
==> normap[5]=0 | |
==> normap[5]=v |
==> normap[6]=0 | |
==> normap[6]=T(4) | |
==> normap[6]=w |
==> normap[7]=T(4) | |
==> normap[7]=T(5) | |
==> normap[7]=x |
==> normap[8]=T(5) | |
==> normap[8]=0 | |
==> normap[8]=y |
==> normap[9]=T(6) | |
==> normap[9]=T(6) | |
==> normap[9]=z |
The normalization (ring) is:
|