==>
|
%body
|
==> |
%body |
|
|
Sao Carlos, 08/02 | http://www.singular.uni-kl.de |
|
|
Sao Carlos, 08/02 | http://www.singular.uni-kl.de |
|
|
Sao Carlos, 08/02 | http://www.singular.uni-kl.de |
ring r=0,(x,y,z),ds;
ideal I=x^4-y*z^2,x*y-z^3,y^2-x^3*z;
list L=facstd(I);
L;
[1]:
_[1]=xy-z3
_[2]=y2-x3z
_[3]=yz2-x4
_[4]=x4+x3z+x2z2+xz3+z4
[2]:
_[1]=x-z
_[2]=y-z2
Again we only obtain 2 components. The 4-th generator
of the first ideal shows that this component might contain up
to 4 branches.
ideal J=L[1]; // the first ideal
ring s=(0,a),(x,y,z),dp;
minpoly=a4+a3+a2+a+1;
def J=imap(r,J);
LIB "primdec.lib";
J[5]=x-a*z; // a factor of J[4]
minAssGTZ(J); // minimal associated primes
[1]:
_[1]=x+(-a)*z
_[2]=y
_[3]=z
Note also that using the factorizing Gröbner basis algorithm is usually
not sufficient to completely decompose an ideal into its components, it should
be used primarily to obtain smaller problems which are then appropriate for
the normalization algorithm.