Build. Blocks
Comb. Appl.
HCA Proving
Arrangements
Branches
Classify
Coding
Deformations
Equidim Part
Existence
Finite Groups
Flatness
Genus
Hilbert Series
Membership
Nonnormal Locus
Normalization
Primdec
Puiseux
Plane Curves
Saturation
Solving
Space Curves
Spectrum
Geometric Genus of Projective Curves - SINGULAR Example
LIB "normal.lib";
ring r = 32003,(x,y,z,w,u),dp;
ideal i = x2+y2+z2+w2+u2, x3+xy2+z3, z4+w4+u4;  // a curve in P^4
genus(i);
==>
17
To obtain more information on the performed computations, you should increase the printlevel:
printlevel=3;
genus(i);
==>
The ideal of the projective curve:

  J[1]=x2+y2+z2+w2+u2
  J[2]=xz2-z3+xw2+xu2
  J[3]=z4+w4+u4
  J[4]=y2z2+y2w2-xzw2+2z2w2-w4+y2u2-xzu2+2z2u2+2w2u2-u4
  J[5]=z3w2-2xw4+zw4+z3u2-2xw2u2-2xu4+zu4
  J[6]=xzw4+16001z2w4-16001w6+xzw2u2-16001w4u2+xzu4+16001z2u4-16001w2u4-16001u6
  J[7]=y2w4+z2w4-16001w6+y2w2u2-xzw2u2+z2w2u2-16000w4u2+y2u4+z2u4-16000w2u4-16001u6

The coefficients of the Hilbert polynomial:   -48,24
arithmetic genus:   49
degree:   24

the projected curve:

  1901x24+6354x22y2-7492x20y4- ... many terms ... +4y2t22+3540xt23+t24

the arithmetic genus of the plane curve:   253

analyse the singularities

......

   many data

......


The projected plane curve has locally:

  singularities:  109
  branches:       232
  nodes:          108
  cusps:            0
  Tjurina number: 300
  Milnor number:  349
  delta of the projected curve: 236
  delta of the curve:            32
  genus:           17

Sao Carlos, 08/02 http://www.singular.uni-kl.de