|
Groebner Bases For Left And Two-sided Ideals
Task: Compute left Groebner bases for the left and two-sided ideals, generated
by the given generating sets. |
Consider the algebra
U(sl2)
= < e, f, h | fe = ef - h,
he = eh + 2e, hf = fh - 2f >,
and two sets of generators
I2 = {e2, f2,
h2-1}
and
I3 = {e3, f3,
h3-4h}
.
Solution: first we set up the algebra,
ring r=0,(e,f,h),Dp;
matrix c[3][3];
matrix d[3][3];
c[1,2]=1;c[1,3]=1;c[2,3]=1;
d[1,2]=-h;
d[1,3]=2e;
d[2,3]=-2f;
system("PLURAL",c,d);
r;
|
==>
|
// characteristic : 0
// number of vars : 3
// block 1 : ordering Dp
// : names e f h
// block 2 : ordering C
// noncommutative relations:
// fe=ef-h
// he=eh+2e
// hf=fh-2f
|
|