| LIB "elim.lib";
ring R = 0,(x,y,z,u,v),(c,lp);
def P = elimRing(yu); P;
==> [1]:
==> // coefficients: QQ
==> // number of vars : 5
==> // block 1 : ordering a
==> // : names y u x z v
==> // : weights 1 1 0 0 0
==> // block 2 : ordering dp
==> // : names y u x z v
==> // block 3 : ordering C
==> [2]:
==> 1,1,1,1,1
intvec w = 1,1,3,4,5;
elimRing(yu,w);
==> [1]:
==> // coefficients: QQ
==> // number of vars : 5
==> // block 1 : ordering a
==> // : names y u x z v
==> // : weights 1 4 0 0 0
==> // block 2 : ordering wp
==> // : names y u x z v
==> // : weights 1 1 3 4 5
==> // block 3 : ordering C
==> [2]:
==> 1,1,3,4,5
ring S = (0,a),(x,y,z,u,v),ws(1,2,3,4,5);
minpoly = a2+1;
qring T = std(ideal(x+y2+v3,(x+v)^2));
def Q = elimRing(yv)[1];
setring Q; Q;
==> // coefficients: QQ[a]/(a2+1)
==> // number of vars : 5
==> // block 1 : ordering a
==> // : names y v x z u
==> // : weights 2 5 0 0 0
==> // block 2 : ordering ws
==> // : names y v x z u
==> // : weights 1 2 3 4 5
==> // block 3 : ordering C
==> // quotient ring from ideal
==> _[1]=y2+2*yu+u2
==> _[2]=v2+y+u3
|