| LIB "sheafcoh.lib";
//
// cohomology of structure sheaf on P^4:
//-------------------------------------------
ring r=0,x(1..5),dp;
module M=0;
intmat A=sheafCoh(0,-7,2);
A;
==> 15,5,1,0,0,0,0,0,0,0,
==> 0,0,0,0,0,0,0,0,0,0,
==> 0,0,0,0,0,0,0,0,0,0,
==> 0,0,0,0,0,0,0,0,0,0,
==> 0,0,0,0,0,0,0,1,5,15
displayCohom(A,-7,2,nvars(r)-1);
==> -7 -6 -5 -4 -3 -2 -1 0 1 2
==> --------------------------------------------
==> 4: 15 5 1 - - - - - - -
==> 3: - - - - - - - - - -
==> 2: - - - - - - - - - -
==> 1: - - - - - - - - - -
==> 0: - - - - - - - 1 5 15
==> --------------------------------------------
==> chi: 15 5 1 0 0 0 0 1 5 15
//
// cohomology of cotangential bundle on P^3:
//-------------------------------------------
ring R=0,(x,y,z,u),dp;
resolution T1=mres(maxideal(1),0);
module M=T1[3];
intvec v=2,2,2,2,2,2;
attrib(M,"isHomog",v);
intmat B=sheafCoh(M,-6,2);
displayCohom(B,-6,2,nvars(R)-1);
==> -6 -5 -4 -3 -2 -1 0 1 2
==> ----------------------------------------
==> 3: 70 36 15 4 - - - - -
==> 2: - - - - - - - - -
==> 1: - - - - - - 1 - -
==> 0: - - - - - - - - 6
==> ----------------------------------------
==> chi: -70 -36 -15 -4 0 0 -1 0 6
|