| LIB "gfan.lib";
// Let's define a cone in R^3 generated by the following half lines:
intmat HL[5][3]=
1,0, 0,
-1,0, 0,
0,1, 1,
0,1,-1,
0,0, 1;
cone c=coneViaPoints(HL);
c;
==> AMBIENT_DIM
==> 3
==> FACETS
==> 0,1,0,
==> 0,1,1
==> LINEAR_SPAN
==>
==>
kill HL,c;
// Note that (1,0,0) and (-1,0,0) form a line, hence also possible:
intmat HL[3][3]=
0,1, 1,
0,1,-1,
0,0, 1;
intmat L[1][3]=
1,0,0;
cone c=coneViaPoints(HL,L);
c;
==> AMBIENT_DIM
==> 3
==> FACETS
==> 0,1,0,
==> 0,1,1
==> LINEAR_SPAN
==>
==>
kill HL,L,c;
// lineality space is exactly Lin(1,0,0)
intmat HL[3][3]=
0,1, 1,
0,1,-1,
0,0, 1;
intmat L[1][3]=
1,0,0;
cone c=coneViaPoints(HL,L,1);
c;
==> AMBIENT_DIM
==> 3
==> FACETS
==> 0,1,0,
==> 0,1,1
==> LINEAR_SPAN
==>
==>
kill HL,L,c;
// and that (0,1,-1), (0,1,1) generate rays
intmat HL[3][3]=
0,1, 1,
0,1,-1;
intmat L[1][3]=
1,0,0;
cone c=coneViaPoints(HL,L,1);
c;
==> AMBIENT_DIM
==> 3
==> FACETS
==> 0,1,-1,
==> 0,1, 1
==> LINEAR_SPAN
==>
==>
kill HL,L,c;
// and that (0,1,-1), (0,1,1) generate rays
intmat HL[3][3]=
0,1, 1,
0,1,-1;
intmat L[1][3]=
1,0,0;
cone c=coneViaPoints(HL,L,3);
c;
==> AMBIENT_DIM
==> 3
==> FACETS
==> 0,1,-1,
==> 0,1, 1
==> LINEAR_SPAN
==>
==>
|