| LIB "arnold.lib";
ring R=0,(x,y),ds;
poly g = x4+2*x2y2+y4+x^(10)+y^(10);
poly phix = x+y^2+x^2+x*y+x^2*y+x*y^3;
poly phiy = y+y^2+2*x^2+x*y+y*x^2+y^2*x+x*y^4;
map phi = R,phix,phiy;
g=phi(g);
Poly F = makePoly(g);
NormalForm N;
N = determineNormalForm(F);
determineNormalFormEquation(N);
==> Embedding dimension = 2
==> Corank of singularity = 2
==> Normal form of type = (0,34),(1,9),(2,2),(9,1),(34,0)
==> Normal form = (a(1))*x^2*y^2+x^9*y+x*y^9+x^34+y^34
==> Exceptional Hypersurface is not determined.
==> Normal form equation =x^34+y^34+x^9*y+x*y^9+65536/25*x^2*y^2*e^16
==> Minimal polynomial = (a^2+1)
==> Minimal polynomial 2 =(625/4294967296*a)*v^40+1
==> Minimal polynomial 3 =e*v-1
==> Milnor number = 33
==> Modality = 1
==> Monomials corresponding to moduli terms = x^2*y^2
==> Delta invariant = 18
==> Number of branches = 4
==> Determinacy <= 16
==> Non-degenerate part = 0
==> Chain of transformations before Morse split of length 0
==> Chain of transformations after Morse split of length 16
==>
==>
|