Is it possible to compute, using SINGULAR,
the Koszul-Tate (i.e. "killing cycles by adding variables") resolution of an ideal generated by a
nonregular sequence of real polynomials say over the ring
of real formal power series?
Best regards, H.-C. Herbig
email:
[email protected]Posted in old Singular Forum on: 2005-05-19 15:58:30+02
Is it possible to compute, using SINGULAR,
the Koszul-Tate (i.e. "killing cycles by adding variables") resolution of an ideal generated by a
nonregular sequence of real polynomials say over the ring
of real formal power series?
Best regards, H.-C. Herbig
email:
[email protected]Posted in old Singular Forum on: 2005-05-19 15:58:30+02