Post a reply
Username:
Note:If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters. 

Smilies
:D :) :( :o :shock: :? 8) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :wink: :!: :?: :idea: :arrow: :| :mrgreen:
Font size:
Font colour
#000000 #000040 #000080 #0000BF #0000FF
#004000 #004040 #004080 #0040BF #0040FF
#008000 #008040 #008080 #0080BF #0080FF
#00BF00 #00BF40 #00BF80 #00BFBF #00BFFF
#00FF00 #00FF40 #00FF80 #00FFBF #00FFFF
#400000 #400040 #400080 #4000BF #4000FF
#404000 #404040 #404080 #4040BF #4040FF
#408000 #408040 #408080 #4080BF #4080FF
#40BF00 #40BF40 #40BF80 #40BFBF #40BFFF
#40FF00 #40FF40 #40FF80 #40FFBF #40FFFF
#800000 #800040 #800080 #8000BF #8000FF
#804000 #804040 #804080 #8040BF #8040FF
#808000 #808040 #808080 #8080BF #8080FF
#80BF00 #80BF40 #80BF80 #80BFBF #80BFFF
#80FF00 #80FF40 #80FF80 #80FFBF #80FFFF
#BF0000 #BF0040 #BF0080 #BF00BF #BF00FF
#BF4000 #BF4040 #BF4080 #BF40BF #BF40FF
#BF8000 #BF8040 #BF8080 #BF80BF #BF80FF
#BFBF00 #BFBF40 #BFBF80 #BFBFBF #BFBFFF
#BFFF00 #BFFF40 #BFFF80 #BFFFBF #BFFFFF
#FF0000 #FF0040 #FF0080 #FF00BF #FF00FF
#FF4000 #FF4040 #FF4080 #FF40BF #FF40FF
#FF8000 #FF8040 #FF8080 #FF80BF #FF80FF
#FFBF00 #FFBF40 #FFBF80 #FFBFBF #FFBFFF
#FFFF00 #FFFF40 #FFFF80 #FFFFBF #FFFFFF
Options:
BBCode is ON
[img] is ON
[flash] is OFF
[url] is ON
Smilies are ON
Disable BBCode
Disable smilies
Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.
   

Topic review - Hilbert-Samuel functions
Author Message
  Post subject:   Reply with quote
Singular has a command which computes the numerator Q(t) for the Hilbert-Poincare series (the denominator is (1-t)^n,
n the number of variables):

Code:
ring A=0,(t,x,y,z),ds;
ideal I=x5y2,x3,y3,xy4,xy7;
intvec v = hilb(std(I),1);
v;
//-> 1,0,0,-2,0,0,1,0


The latter output has to be interpreted as follows:
if v= (v0, ... , vd, 0) then Q(t) = sum_{i=0}^{d} vi t^i.

More details can be found in the book
G.-M. Greuel / G. Pfister http://www.mathematik.uni-kl.de/%7Epfister/Artikel/buchGMG.ps.gz: A Singular Introduction to Commutative Algebra, Springer 2002 second edition 2007 (pages 315 ff).
Post Posted: Mon Mar 30, 2009 9:32 pm
  Post subject:  Hilbert-Samuel functions  Reply with quote
Hi! Let (R,m) be a Noetherian local ring. I just wonder if there is any SINGULAR codes that can compute the Poincare series of the Hilbert-Samuel functions for m-primary ideals. Thanks.
Post Posted: Fri Aug 29, 2008 12:05 am


It is currently Fri May 13, 2022 11:06 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group