Singular
https://www.singular.uni-kl.de/forum/

It is possible to an ideal contain fractions?
https://www.singular.uni-kl.de/forum/viewtopic.php?f=10&t=1347
Page 1 of 1

Author:  Luis Bandeira [ Thu Aug 11, 2005 5:31 pm ]
Post subject:  It is possible to an ideal contain fractions?

Can an ideal contain fractions? Moreover, what does singular with the following input:

ring R=0,(x,y,z,w),dp;
ideal I=x^2+y-w,(x^2+z)/(1-y-z^2),(x^3-y)/(x+y+z+w);
std(I);



email: [email protected]
Posted in old Singular Forum on: 2002-12-20 18:43:57+01

Author:  levandov [ Thu Aug 11, 2005 8:55 pm ]
Post subject:  Re: It is possible for an ideal to contain fractions?

Quote:
> Can an ideal contain fractions?

No. Fractions are not elements of the ring of polynomials (but of the field of rational functions).

Quote:
>Moreover, what does singular with the following input:
>
Code:
ring R=0,(x,y,z,w),dp;
ideal I=x^2+y-w,(x^2+z)/(1-y-z^2),(x^3-y)/(x+y+z+w);
std(I);


The division is performed in the ring of polynomials giving zero as the second and the third generators of I.

If you want to solve the system of equations
x^2+y-w = 0,
x^2+z = 0,
x^3-y = 0,
1-y-z^2 <> 0,
x+y+z+w <> 0,
we recommend the following:
Code:
ring R=0,(x,y,z,w),dp;
ideal I = x^2+y-w,x^2+z,x^3-y;
ideal J = 1-y-z^2, x+y+z+w;
facstd(I,J);


See the description of facstd for details.

Regards,

Page 1 of 1 All times are UTC + 1 hour [ DST ]
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/