next up previous
Next: 12. Procedures Up: Coset Enumeration using Prefix Previous: 11. Enhancements

Bibliography

1
J. J. Cannon, L. A. Dimino, G. Havas, and J. M.Watson.
Implementation and analysis of the Todd-Coxeter algorithm.
Mathematical Computation 27:463-490, 1973.

2
H. S. M. Coxeter.
The abstract groups $G^{m,n,n}$.
In Transaction American Mathematical Society 45:73-150, 1939.

3
G. Havas.
Coset enumeration strategies.
In Proc. ISSAC'91, pages 191-199. ACM, 1991.

4
J. Leech.
Coset enumeration.
Computational Group Theory, pages 3-18, Academic Press, 1984.

5
S. A. Linton.
Constructing Matrix Representations of Finitely Presented Groups.
Journal of Symbolic Computation, 12 (1991), 427-438.

6
I. D. Macdonald.
On a Class of Finitely Presented Groups.
Canadian Journal of Mathematics, 14:602-613, 1962.

7
K. Madlener and B. Reinert.
Computing Gröbner bases in monoid and group rings.
In M. Bronstein, editor, Proc. ISSAC'93, pages 254-263. ACM, 1993.

8
J. Neubüser.
An elementary introduction to coset table methods in computational group theory.
In C. M. Campbell and E. F. Robertson, editors, Groups St. Andrews 1981, L.M.S. Lecture Notes 71, pages 1-45. Cambridge University Press, 1982.

9
B. Reinert.
Observations on Coset Enumeration.
Reports On Computer Algebra No. 23, Centre for Computer Algebra, University of Kaiserslautern, 1998.
Online available at http://www.mathematik.uni-kl.de/$\sim$zca.

10
B. Reinert.
N.N.
Technical Report, University of Kaiserslautern.

11
B. Reinert, T. Mora, and K. Madlener.
A note on Nielsen reduction and coset enumeration.
In Proc. ISSAC'98, 1998.

12
B. Reinert and D. Zeckzer.
MRC - A System for Computing Gröbner Bases in Monoid and Group Rings.
Reports On Computer Algebra No. 20, Centre for Computer Algebra, University Kaiserslautern, 1998.
Online available at http://www.mathematik.uni-kl.de/$\sim$zca.

13
B. Reinert and D. Zeckzer.
MRC - Data Structures and Algorithms for Computing in Monoid and Group Rings.
To appear in AAECC.

14
C. Sims.
The Knuth-Bendix procedure for strings as a substitute for coset enumeration.
Journal of Symbolic Computation, 12:439-442, 1991.

15
C. Sims.
Computation with Finitely Presented Groups.
Cambridge University Press, 1994.

16
J. Todd and H. Coxeter.
A practical method for enumerating cosets of a finite abstract group.
In Proc. Edinburgh Math. Soc., volume 5, pages 26-34, 1936.



| ZCA Home | Reports |