next up previous
Next: 14. Computing examples using Up: 13. Examples Previous: 13.2 Without Preprocessing


13.3 Adding Symmetric Relators


Table 8: Maximal number of cosets defined - Prefix-Strategies
Example Felsch HLT NONE P-ALL P-G P-R
$E_1 \vert E$ 98 695 157 572 572 572
$(2, 5, 7; 2) \vert E$ 216 224 143 276 276 275
$G^{3, 7, 17} \vert <ab, c>$ 724 1381 1153 968 1576 2206
$PSL_2(11) \vert E$ 660 661 660 947 888 897
$(2, 3, 7; 7) \vert E$ 1221 2286 1534 1561 1518 2613
$M_{11}^{(1)} \vert <a>$ 720 721 720 720 720 720
$(8, 7 \vert 2, 3) \vert <a^2, a^{-1}b>$ 824 1241 973 1862 1759 1325
$Neu \vert <a, c>$ 2650 4553 1683 3828 2699 3361
$Cam(3) \vert E$ 653 2189 161 1884 1884 1883
$G^{3,7,16}\vert E$ 21504 69990 75058 59350 59338 62715
$G(2,4) \vert E$ 3188 2973 467 2767 2767 2585
$G(2,6) \vert E$ 7889 4194 1343 4746 4746 3904
$G(3,3)\vert E$ 25481 29007 9753 76022 76022 69897



Table 9: Total number of cosets defined - Prefix-Strategies
Example Felsch HLT NONE P-ALL P-G P-R
$E_1 \vert E$ 104 758 157 572 572 572
$(2, 5, 7; 2) \vert E$ 216 227 143 282 287 284
$G^{3, 7, 17} \vert <ab, c>$ 761 2315 1153 1026 1887 2492
$PSL_2(11) \vert E$ 743 824 684 1082 1027 1036
$(2, 3, 7; 7) \vert E$ 1310 2880 1602 1650 1885 2902
$M_{11}^{(1)} \vert <a>$ 724 1349 720 1069 860 956
$(8, 7 \vert 2, 3) \vert <a^2, a^{-1}b>$ 840 1422 975 1936 1834 1389
$Neu \vert <a, c>$ 2750 7158 1697 3924 2784 3455
$Cam(3) \vert E$ 660 2206 173 1884 1884 1883
$G^{3,7,16}\vert E$ 23702 161805 75453 65472 65460 62716
$G(2,4) \vert E$ 3193 3255 467 2767 2767 2585
$G(2,6) \vert E$ 7893 4582 1343 4746 4746 3904
$G(3,3)\vert E$ 25496 31993 9753 76025 76025 69900



Table 10: Maximal number of cosets defined - Inverse-Strategies
Example Felsch HLT NONE I-ALL I-R I-R-P
$E_1 \vert E$ 98 695 157 542 97 572
$(2, 5, 7; 2) \vert E$ 216 224 143 138 176 277
$G^{3, 7, 17} \vert <ab, c>$ 724 1381 1153 1153 1153 945
$PSL_2(11) \vert E$ 660 661 660 660 660 967
$(2, 3, 7; 7) \vert E$ 1221 2286 1534 1725 1710 1561
$M_{11}^{(1)} \vert <a>$ 720 721 720 720 720 720
$(8, 7 \vert 2, 3) \vert <a^2, a^{-1}b>$ 824 1241 973 1213 1166 1860
$Neu \vert <a, c>$ 2650 4553 1683 9589 1637 3869
$Cam(3) \vert E$ 653 2189 161 1922 386 2005
$G^{3,7,16}\vert E$ 21504 69990 75058 47841 65109 59115
$G(2,4) \vert E$ 3188 2973 467 2544 424 2770
$G(2,6) \vert E$ 7889 4194 1343 4517 1481 4731
$G(3,3)\vert E$ 25481 29007 9753 57708 9253 76276



Table 11: Total number of cosets defined - Inverse-Strategies
Example Felsch HLT NONE I-ALL I-R I-R-P
$E_1 \vert E$ 104 758 157 542 97 572
$(2, 5, 7; 2) \vert E$ 216 227 143 161 177 284
$G^{3, 7, 17} \vert <ab, c>$ 761 2315 1153 1153 1153 998
$PSL_2(11) \vert E$ 743 824 684 876 698 1113
$(2, 3, 7; 7) \vert E$ 1310 2880 1602 1834 1757 1652
$M_{11}^{(1)} \vert <a>$ 724 1349 720 999 760 1056
$(8, 7 \vert 2, 3) \vert <a^2, a^{-1}b>$ 840 1422 975 1304 1167 1933
$Neu \vert <a, c>$ 2750 7158 1697 10066 1671 3964
$Cam(3) \vert E$ 660 2206 173 1922 391 2005
$G^{3,7,16}\vert E$ 23702 161805 75453 71238 66091 65196
$G(2,4) \vert E$ 3193 3255 467 2544 424 2770
$G(2,6) \vert E$ 7893 4582 1343 4517 1481 4731
$G(3,3)\vert E$ 25496 31993 9753 57709 9253 76279



next up previous
Next: 14. Computing examples using Up: 13. Examples Previous: 13.2 Without Preprocessing
| ZCA Home | Reports |