Home Online Manual
Top
Back: normalI
Forward: sagbiSPoly
FastBack: reesclos_lib
FastForward: sing4ti2_lib
Up: Commutative algebra
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.25 sagbi_lib

Library:
sagbi.lib
Purpose:
Compute SAGBI basis (subalgebra bases analogous to Groebner bases for ideals) of a subalgebra
Authors:
Jan Hackfeld, [email protected]
Gerhard Pfister, [email protected]
Viktor Levandovskyy, [email protected]

Overview:
SAGBI stands for 'subalgebra bases analogous to Groebner bases for ideals'. SAGBI bases provide important tools for working with finitely presented subalgebras of a polynomial ring. Note, that in contrast to Groebner bases, SAGBI bases may be infinite.

References:
Ana Bravo: Some Facts About Canonical Subalgebra Bases, MSRI Publications 51, p. 247-254

Procedures:

D.4.25.1 sagbiSPoly  computes SAGBI S-polynomials of A
D.4.25.2 sagbiReduce  performs subalgebra reduction of I by A
D.4.25.3 sagbi  computes SAGBI basis for A
D.4.25.4 sagbiPart  computes partial SAGBI basis for A
D.4.25.5 algebraicDependence  performs iterations of SAGBI for algebraic dependencies of I
See also: algebra_lib.