| LIB "normaliz.lib";
ring R=37,(x,y,t),dp;
ideal I=x3,x2y,y3;
intclToricRing(I);
==> _[1]=y
==> _[2]=x
showNuminvs();
==> hilbert_basis_elements : 2
==> number_extreme_rays : 2
==> dim_max_subspace : 0
==> embedding_dim : 3
==> rank : 2
==> external_index : 1
==> internal_index : 3
==> number_support_hyperplanes : 2
==> size_triangulation : 1
==> sum_dets : 1
==> integrally_closed : 0
==> inhomogeneous : 0
==> graded : 1
==> degree_1_elements : 2
==> grading : 1,1,0
==> grading_denom : 1
==> multiplicity : 1
==> multiplicity_denom : 1
==> hilbert_series_num : 1
==> hilbert_series_denom : 1,1
==> class_group : 0
//now the same example with another grading
intvec grading = 2,3,1;
intclToricRing(I,grading);
==> _[1]=x
==> _[2]=y
showNuminvs();
==> hilbert_basis_elements : 2
==> number_extreme_rays : 2
==> dim_max_subspace : 0
==> embedding_dim : 3
==> rank : 2
==> external_index : 1
==> internal_index : 3
==> number_support_hyperplanes : 2
==> size_triangulation : 1
==> sum_dets : 1
==> integrally_closed : 0
==> inhomogeneous : 0
==> graded : 1
==> degree_1_elements : 0
==> grading : 2,3,1
==> grading_denom : 1
==> multiplicity : 1
==> multiplicity_denom : 6
==> hilbert_series_num : 1,-1,1
==> hilbert_series_denom : 1,6
==> class_group : 0
|