| LIB "hnoether.lib";
ring exring=0,(x,y),dp;
list Hne=develop(y4+2x3y2+x6+x5y);
list INV=invariants(Hne);
INV[1]; // the characteristic exponents
==> 4,6,7
INV[2]; // the generators of the semigroup of values
==> 4,6,13
INV[3],INV[4]; // the Puiseux pairs in packed form
==> 3,7 2,2
INV[5] div 2; // the delta-invariant
==> 8
INV[6]; // the sequence of multiplicities
==> 4,2,2,1,1
// To display the invariants more 'nicely':
displayInvariants(Hne);
==> characteristic exponents : 4,6,7
==> generators of semigroup : 4,6,13
==> Puiseux pairs : (3,2)(7,2)
==> degree of the conductor : 16
==> delta invariant : 8
==> sequence of multiplicities: 4,2,2,1,1
/////////////////////////////
INV=invariants((x2-y3)*(x3-y5));
INV[1][1]; // the characteristic exponents of the first branch
==> 2,3
INV[2][6]; // the sequence of multiplicities of the second branch
==> 3,2,1,1
print(INV[size(INV)][1]); // the contact matrix of the branches
==> 0 3
==> 3 0
print(INV[size(INV)][2]); // the intersection numbers of the branches
==> 0 9
==> 9 0
INV[size(INV)][3]; // the delta invariant of the curve
==> 14
|