Home Online Manual
Top
Back: zeroOpt
Forward: regIdeal
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.17 mregular_lib

Library:
mregular.lib
Purpose:
Castelnuovo-Mumford regularity of homogeneous ideals
Authors:
I.Bermejo, [email protected]
Ph.Gimenez, [email protected]
G.-M.Greuel, [email protected]

Overview:
A library for computing the Castelnuovo-Mumford regularity of a homogeneous ideal that DOES NOT require the computation of a minimal graded free resolution of the ideal.
It also determines depth(basering/ideal) and satiety(ideal). The procedures are based on 3 papers by Isabel Bermejo and Philippe Gimenez: 'On Castelnuovo-Mumford regularity of projective curves' Proc.Amer.Math.Soc. 128(5) (2000), 'Computing the Castelnuovo-Mumford regularity of some subschemes of Pn using quotients of monomial ideals', Proceedings of MEGA-2000, J. Pure Appl. Algebra 164 (2001), and 'Saturation and Castelnuovo-Mumford regularity', Preprint (2004).

Procedures:

D.4.17.1 regIdeal  regularity of homogeneous ideal id
D.4.17.2 depthIdeal  depth of S/id with S=basering, id homogeneous ideal
D.4.17.3 satiety  saturation index of homogeneous ideal id
D.4.17.4 regMonCurve  regularity of projective monomial curve defined by li
D.4.17.5 NoetherPosition  Noether normalization of ideal id
D.4.17.6 is_NP  checks whether variables are in Noether position
D.4.17.7 is_nested  checks whether monomial ideal id is of nested type