D.6.9.1 gmsring | | Gauss-Manin system of t with variable s |
D.6.9.2 gmsnf | | Gauss-Manin normal form of p |
D.6.9.3 gmscoeffs | | Gauss-Manin basis representation of p |
D.6.9.4 bernstein | | Bernstein-Sato polynomial of t |
D.6.9.5 monodromy | | Jordan data of complex monodromy of t |
D.6.9.6 spectrum | | singularity spectrum of t |
D.6.9.7 sppairs | | spectral pairs of t |
D.6.9.8 vfilt | | V-filtration of t on Brieskorn lattice |
D.6.9.9 vwfilt | | weighted V-filtration of t on Brieskorn lattice |
D.6.9.10 tmatrix | | matrix of t w.r.t. good basis of Brieskorn lattice |
D.6.9.11 endvfilt | | endomorphism V-filtration on Jacobian algebra |
D.6.9.12 sppnf | | spectral pairs normal form of (a,w[,m]) |
D.6.9.13 sppprint | | print spectral pairs spp |
D.6.9.14 spadd | | sum of spectra sp1 and sp2 |
D.6.9.15 spsub | | difference of spectra sp1 and sp2 |
D.6.9.16 spmul | | linear combination of spectra sp |
D.6.9.17 spissemicont | | semicontinuity test of spectrum sp |
D.6.9.18 spsemicont | | semicontinuous combinations of spectra sp0 in sp |
D.6.9.19 spmilnor | | Milnor number of spectrum sp |
D.6.9.20 spgeomgenus | | geometrical genus of spectrum sp |
D.6.9.21 spgamma | | gamma invariant of spectrum sp |