|
B.2.3 Global orderings
For all these orderings, we have Loc = ![$K[x]$](sing_512.png)
- lp:
- lexicographical ordering:
. - rp:
- reverse lexicographical ordering:
![$x^\alpha < x^\beta \Leftrightarrow \exists\; 1 \le i \le n :
\alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i.$](sing_515.png) - dp:
- degree reverse lexicographical ordering:
let
then
or
and
![$\exists\ 1 \le i \le n: \alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$](sing_519.png) - Dp:
- degree lexicographical ordering:
let
then
or
and
![$\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
\ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$](sing_520.png) - wp:
- weighted reverse lexicographical ordering:
let
be positive integers. Then
is defined as dp
but with
![$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$](sing_523.png) - Wp:
- weighted lexicographical ordering:
let
be positive integers. Then
is defined as Dp
but with
![$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$](sing_523.png)
|