| LIB "brnoeth.lib";
int plevel=printlevel;
printlevel=-1;
ring s=2,(x,y),lp;
list C=Adj_div(x3y+y3+x);
==> The genus of the curve is 3
// The list of computed places:
C[3];
==> [1]:
==> 1,1
==> [2]:
==> 1,2
// create places up to degree 4
list L=NSplaces(1..4,C);
// The list of computed places is now:
L[3];
==> [1]:
==> 1,1
==> [2]:
==> 1,2
==> [3]:
==> 1,3
==> [4]:
==> 2,1
==> [5]:
==> 3,1
==> [6]:
==> 3,2
==> [7]:
==> 3,3
==> [8]:
==> 3,4
==> [9]:
==> 3,5
==> [10]:
==> 3,6
==> [11]:
==> 3,7
==> [12]:
==> 4,1
==> [13]:
==> 4,2
==> [14]:
==> 4,3
// e.g., affine non-singular points of degree 4 :
def aff_r=L[1][1];
setring aff_r;
Aff_Points(4);
==> [1]:
==> [1]:
==> _[1]=y2+y+1
==> _[2]=x2+xy+x+1
==> [2]:
==> 12
==> [2]:
==> [1]:
==> _[1]=y4+y3+1
==> _[2]=x+y3+y
==> [2]:
==> 13
==> [3]:
==> [1]:
==> _[1]=y4+y3+y2+y+1
==> _[2]=x+y2+y+1
==> [2]:
==> 14
// e.g., base point of the 1st place of degree 4 :
def S(4)=L[5][4][1];
setring S(4);
POINTS[1];
==> [1]:
==> (a3)
==> [2]:
==> (a2+a)
==> [3]:
==> 1
printlevel=plevel;
|