Next: 4.2 Resolutions
Up: 4. Syzygies
Previous: 4. Syzygies
Definition 4..1
Let
![$I=\{g_1, \ldots, g_q\}\subseteq K[\underline{x}]^r$](img101.gif)
.
The
module of syzygies syz(
I) is
ker
![$(K[\underline{x}]^q \to K[\underline{x}]^r, \sum w_i e_i \mapsto \sum w_i g_i)$](img102.gif)
.
Remark 4..3
Use a module ordering with

and the elimination property of lemma
2.7.
SINGULAR example:
ring R=0,(x,y,z),(c,dp);
ideal I=maxideal(1);
// the syzygies of the (x,y,z)
syz(I);
// syz yields a generating set for the module of syzygies
// but may not be a standard basis !
| ZCA Home |
Reports |