next up previous contents
Next: 5. Examples Up: 4. Syzygies Previous: 4.6 Saturation

4.7 Annihilator of a module

Lemma 4..9   Let $\;R=Loc_<K[x_1,\ldots , x_n]/(h_1,\ldots , h_p)\;$, $M\ \subseteq R^m$.
$ Ann_R(R^m/M):=\left\{ \,g\in R\,\vert\:g R^m\subset M\,\right\} $ is generated by first entries of syzygies of the module

\begin{displaymath}\left(
\begin{array}{c\vert c\vert c\vert c\vert c}
e_1 & M &...
... \ddots & 0\\
e_m & 0 & \cdots & 0 & M \\
\end{array}\right)
\end{displaymath}

where ei is the i-th unit vector in Rm.
(We identify a matrix with the module generated by it columns.)



| ZCA Home | Reports |