Next: Contents
Up: Algorithms in Singular
Previous: 5.3 TX and TX(M)
- Ba
- Bayer, D.: The division algorithm and the Hilbert scheme.
Thesis, Harvard Univ. 1982.
- BS
- Bayer, D.; Stillman, M.: Macaulay (Version 3.0). A
computer algebra system for algebraic geometry.
- BW
- Becker, T.; Weispfenning, V.: Gröbner Bases. A
computational approach to commutative algebra. Springer-Verlag GTM 141 (1991).
- B1
- Buchberger, B.: Ein Algorithmus zum Auffinden der
Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal.
Thesis, Univ. Innsbruck, 1965.
- B2
- Buchberger, B.: Gröbner bases: an algorithmic method in
polynomial ideal theory, in N.K Bose (ed.) Recent trends in multidimensional
system theory, Reidel (1985).
- CLO
- Cox, D; Little, J.; O'Shea, D.:
Ideals, Varieties and Algorithms. An Introduction to Computational
Algebraic Geometry and Commutative Algebra. Springer 1992.
- E
- Eisenbud, D.: Commutative Algebra with a view toward Algebraic
Geometry. GTM 150 Springer, 1995.
- G
- Gräbe, H.-G.: The tangent cone algorithm and
homogenization. To appear in J. Pure Appl. Alg.
- GG
- Grassmann, H; Greuel, G.-M.; Martin, B.; Neumann, W.;
Pfister, G.; Pohl, W.; Schönemann, H.; Siebert, T.:
Standard bases, syzygies and their implementation in SINGULAR.
Preprint 251, Fachbereich Mathematik, Universität Kaiserslautern 1994.
- GM
- Gebauer, R.; Möller, M.: On an installation of
Buchberger's Algorithm. J. Symbolic Computation (1988) 6, 275-286.
- GMNRT
- Giovini, A.; Mora, T.; Niesi, G.; Robbiano, L.;
Traverso, C.: ``One sugar cube, please'' or selection strategies in the
Buchberger algorithm. Proceedings of the 1991 ISSAC, 55-63.
- GTZ
- Gianni, P.; Trager, B.;Zacharias, G.:
Gröbner bases and Primary Decomposition of Polynomial Ideals.
Journal of Symbolic Computation. 1985.
- L
- Lazard, D.: Gröbner bases, Gaussian elimination, and
resolution of systems of algebraic equations. Proc. EUROCAL 83, LN Comp. Sci. 162, 146-156.
- M1
- Mora, T.: An algorithm to compute the equations of tangent
cones. Proc. EUROCAM 82, Springer Lecture Notes in Computer Science (1982).
- M2
- Mora, T.: Seven variations on standard bases. Preprint,
Univ. Genova (1988).
- M3
- Mora, T.: La Queste del Saint Graal: a computational
approach to local algebra. Discrete Applied Math. 33, 161-190 (1991).
- MMT
- Möller, H.M.; Mora, T.; Traverso, C.: Gröbner bases
computation using syzygies. Proc. of ISSAC 1992.
- MPT
- Mora, T.; Pfister, G.; Traverso, C.: An introduction to
the tangent cone algorithm . Advances in Computing research, Issues in
Robotics and nonlinear geometry (6) 199-270 (1992).
- PS
- Pfister, G.; Schönemann, H.: Singularities with exact
Poincaré complex but not quasihomogeneous. Rev. Mat. de la Univ. Complutense de Madrid 2 (1989).
- R
- Robbiano, L.: Termorderings on the polynomial ring.
Proceedings of EUROCAL 85, Lecture Notes in Computer Science 204,
513-517 (1985).
- S
- Schreyer, F.-O.: A standard basis approach to syzygies of
canonical curves. J. reine angew. Math. 421, 83-123 (1991).
- St1
- Stillman, M.: Methods for computing in algebraic
geometry and commutative algebra.
Acta Applicandae Mathematicae 21(77-103) 1990.
- St2
- Stillman, M.: Macaulay. A tutorial.
1992.
- Si
- Singular reference manual. Version 0.9.2. 1995.
Available from ftp://helios.mathematematik.uni-kl.de/pub/Math/Singular/bin/
| ZCA Home |
Reports |