next up previous contents
Next: Contents Up: Algorithms in Singular Previous: 5.3 TX and TX(M)

Bibliography

Ba
Bayer, D.: The division algorithm and the Hilbert scheme. Thesis, Harvard Univ. 1982.

BS
Bayer, D.; Stillman, M.: Macaulay (Version 3.0). A computer algebra system for algebraic geometry.

BW
Becker, T.; Weispfenning, V.: Gröbner Bases. A computational approach to commutative algebra. Springer-Verlag GTM 141 (1991).

B1
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Thesis, Univ. Innsbruck, 1965.

B2
Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory, in N.K Bose (ed.) Recent trends in multidimensional system theory, Reidel (1985).

CLO
Cox, D; Little, J.; O'Shea, D.: Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer 1992.

E
Eisenbud, D.: Commutative Algebra with a view toward Algebraic Geometry. GTM 150 Springer, 1995.

G
Gräbe, H.-G.: The tangent cone algorithm and homogenization. To appear in J. Pure Appl. Alg.

GG
Grassmann, H; Greuel, G.-M.; Martin, B.; Neumann, W.; Pfister, G.; Pohl, W.; Schönemann, H.; Siebert, T.: Standard bases, syzygies and their implementation in SINGULAR. Preprint 251, Fachbereich Mathematik, Universität Kaiserslautern 1994.

GM
Gebauer, R.; Möller, M.: On an installation of Buchberger's Algorithm. J. Symbolic Computation (1988) 6, 275-286.

GMNRT
Giovini, A.; Mora, T.; Niesi, G.; Robbiano, L.; Traverso, C.: ``One sugar cube, please'' or selection strategies in the Buchberger algorithm. Proceedings of the 1991 ISSAC, 55-63.

GTZ
Gianni, P.; Trager, B.;Zacharias, G.: Gröbner bases and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation. 1985.

L
Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. Proc. EUROCAL 83, LN Comp. Sci. 162, 146-156.

M1
Mora, T.: An algorithm to compute the equations of tangent cones. Proc. EUROCAM 82, Springer Lecture Notes in Computer Science (1982).

M2
Mora, T.: Seven variations on standard bases. Preprint, Univ. Genova (1988).

M3
Mora, T.: La Queste del Saint Graal: a computational approach to local algebra. Discrete Applied Math. 33, 161-190 (1991).

MMT
Möller, H.M.; Mora, T.; Traverso, C.: Gröbner bases computation using syzygies. Proc. of ISSAC 1992.

MPT
Mora, T.; Pfister, G.; Traverso, C.: An introduction to the tangent cone algorithm . Advances in Computing research, Issues in Robotics and nonlinear geometry (6) 199-270 (1992).

PS
Pfister, G.; Schönemann, H.: Singularities with exact Poincaré complex but not quasihomogeneous. Rev. Mat. de la Univ. Complutense de Madrid 2 (1989).

R
Robbiano, L.: Termorderings on the polynomial ring. Proceedings of EUROCAL 85, Lecture Notes in Computer Science 204, 513-517 (1985).

S
Schreyer, F.-O.: A standard basis approach to syzygies of canonical curves. J. reine angew. Math. 421, 83-123 (1991).

St1
Stillman, M.: Methods for computing in algebraic geometry and commutative algebra. Acta Applicandae Mathematicae 21(77-103) 1990.

St2
Stillman, M.: Macaulay. A tutorial. 1992.

Si
Singular reference manual. Version 0.9.2. 1995. Available from ftp://helios.mathematematik.uni-kl.de/pub/Math/Singular/bin/


| ZCA Home | Reports |