next up previous
Next: Example Up: Algorithm Previous: Computation

Summary

Here are the main steps of the algorithm:

  1. Compute a $ {\mathbf{C}\{\!\{\partial^{-1}_t\}\!\}}$-basis $ \boldsymbol{m}$ of $ \mathcal{H}''$.
  2. For increasing $ k$ compute successively the lattices $ \mathcal{H}''_k$ in terms of $ \boldsymbol{m}$, and $ t$ in terms of $ \boldsymbol{m}$ up to order $ k$ until $ k=k_\infty$ and $ \mathcal{H}''_k$ is the saturation $ \mathcal{H}''_\infty$ of $ \mathcal{H}''$.
  3. Compute a $ {\mathbf{C}\{\!\{\partial^{-1}_t\}\!\}}$-basis $ \boldsymbol{m}'\boldsymbol{m}$ of $ \mathcal{H}''_\infty$.
  4. Compute $ t$ in terms of $ \boldsymbol{m}$ up to order $ \delta(\boldsymbol{m}')+n+1$.
  5. Compute $ t$ in terms of $ \boldsymbol{m}'\boldsymbol{m}$ up to order $ K:=n+1$.
  6. Compute $ \mathcal{H}''$ in terms of $ \boldsymbol{m}'\boldsymbol{m}$.
  7. Compute the $ V$-filtration on $ \mathcal{H}''_\infty/\partial_t^{-K}\mathcal{H}''_\infty$ in terms of $ \boldsymbol{m}'\boldsymbol{m}$.
  8. Compute the induced $ V$-filtration on $ \mathcal{H}''/\partial^{-1}_t\mathcal{H}''$ in terms of $ \boldsymbol{m}'\boldsymbol{m}$.



Christoph Lossen
2001-03-21