next up previous contents
Next: 4.5 Ideal quotient Up: 4. Syzygies Previous: 4.3 Kernel of a

4.4 Module intersection 2

Let R be an affine ring, and let $I,J,K\subseteq R$ be ideals. One can compute generators for the intersection $L=I\cap J\cap K$ in the follwing way: L is the kernel of the R-module homomorphism $\phi:R\rightarrow R/I\oplus R/J \oplus R/K$ which sends 1 to (1,1,1).

Lemma 4..7  

\begin{displaymath}I\cap J\cap K=modulo( \left(
\begin{array}{c}
1\\
1\\
1\\
...
...I & 0 & 0 \\
0 & J & 0 \\
0 & 0 & K \\
\end{array}\right) ).\end{displaymath}



| ZCA Home | Reports |