next up previous
Next: 7. Finiteness Up: Splitting algorithm for vector Previous: 5. Criteria for row-minimality

6. Finding a J-row-reduction

 

(6.1) In looking for a strict J-row-reduction of a presentation matrix Q, we have to find a matrix T from $ {\cal N}_Q^{(J)} $ such that for the associated constant matrix

\begin{displaymath}N=N_T := \left( \tilde{T}_0', \tilde{T}_0'' \right) \in \mbox...
...ne{m} \right): \ \
\mbox{rk} \left( \tilde{I} + N \right) < l;\end{displaymath}

here $\tilde{I} := ( I_l, 0)$. The set $ \left\{ N_T \vert T \in {\cal N}_Q^{(J)} \right\} $ forms a linear subspace of $ \mbox{Mat} \, (l, n;R/\underline{m}) $. Choose a basis $ N_1, \ldots , N_q $ and consider the generic matrix

\begin{displaymath}N_* = N_* (Z) := \tilde{I} + \sum_{i=1}^q N_i \cdot Z_i .\end{displaymath}


Finding a reduction is equivalent to obtaining a zero z of the ideal of maximal minors

\begin{displaymath}minor(N_*) \subset K[Z_1,...,Z_q] ,\end{displaymath}

which, in general, seems to be not possible. (For simplicity we assume $K=R/\underline{m}$.)

 

(6.2) If our presentation matrix Q splits with respect to J, then by Lemma 2 there exists a unique minimal module $ \langle A_0 \rangle $ in $ \{ {\cal M}\left( U_T Q \right) \vert T \in {\cal N}_Q^{(J)} \}. $ This fact will reduce (6.1) to a linear problem! Otherwise we could stop and try another subset J of rows of Q.

 

(6.3) Let $ m_1=ld (\underline {a}_1),..., m_l=ld(\underline{a}_l) $ be the set of leading monomials of the minimal generating system of $ {\cal M}(Q)=\langle A \rangle $ , formed by the columns of A, cf. (5.2). Take the first index $ s \leq l $ such that ms is not a leading term of $ \langle A_0 \rangle $. Let Rk(ms), resp. Rk+(ms), denote the quotient of Rk by the submodule of all monomials greater than or equal to ms, resp. strictly greater than ms, with respect to the monomial order of Rk.
By our choice, $ \langle A_0 \rangle $ and $ {\cal M}\, (Q) $ have the same image in Rk(ms) and $ \langle A_0 \rangle $ is still the unique minimal a an Rk+ (ms)-submodule. It is therefore of K-codimension 1 with respect to $ {\cal M}(Q) $. Subsequentely, any strict reduction $ {\cal M}(U_TQ) $ of $ {\cal M}(Q) $ in Rk+(ms) will induce $ \langle A_0 \rangle $ in Rk+(ms).

 

(6.4) By construction we have $ a_j \equiv 0 $ for j>s in R+(ms); hence, $ {\cal M}(U_TQ) $ is determined by the submatrix NT(s) of the first s columns of NT.

Proposition 12  
Let $ minor(i)=minor(N_*^{(i)}) \subset K[Z] $ be the ideal of i-minors from the first i rows of N*. Then
(i1) $\ minor(s-1)=(1) $,
(i2) $\ minor(s) \not= (1) $.
(i3) $\ \mbox{If} \ Q $ splits with respect to J, then the linear space spanned by the columns of $ N_*^{(s)} (\underline{z})$ : $\langle N_*^{(s)} (\underline{z}) \rangle $ is either Ks or a fixed hyperplane $ H \subset K^s $ in case $ \underline{z} $ is a zero of the ideal minor(s).

In other words, if $\langle N_*^{(s)} (\underline{z}) \rangle $ is dependent of the choice of a zero $ \underline{z} $ from minor(s), then Q does not J-split!
(i1) and (i2) hold by our choice of s. If $ \underline{z} $ is a zero of minor(s), then for $N_* (\underline z) = N _T $

\begin{displaymath}{\cal M}(U_T Q)\equiv \langle A_0 \rangle \ \ \mbox{over} \ \ R_+ (m_s). \end{displaymath}

 

(6.5) If Q is J-split, the set of zeros of the ideal minor(s) form a linear subspace with respect to Z:

Proposition 13  
 If Q is J-split, the radical of minor(s) is generated by linear polynomials.

Note that the radical of an ideal may be computed by just taking annihilators of certain Ext-groups (cf. [EV]). This method is implemented as a procedure in SINGULAR, using only syzygy- and standard-basis-computations. Hence finding a J-row-reduction reduces to solving linear equations if there exists a unique minimal.

Let $ N_0 = N^{(s)} (\underline {z}) $ and $ \underline{z} $ be a zero of minor(s). Then $ \mbox{rk}\, N_0 = s-1 $, and consequently Then regular constant matrices $ \Lambda \in Gl_s(K)$, $\tilde \Lambda \in Gl_n(K) $ exist such that

\begin{displaymath}\Lambda N_0 \tilde \Lambda =
\left(
\begin{array}{cc}
I_{s-1} & 0 \\
0 & 0
\end{array}
\right) =: \tilde I_{s-1}.
\end{displaymath}

Moreover, $ minor(s) = minor( \Lambda N_*^{(s)} \tilde \Lambda ) $. Because $\langle N_*^{(s)} (\underline{z}) \rangle $ is independent of the choice of a zero $ \underline{z} $ of minor(s), the same holds for $ \langle \Lambda N _*^{(s)} \tilde \Lambda \rangle $. Therefore, $ \underline{z} $ is a zero of minor(s) if and only if $ \langle \Lambda {\cal N}_*^{(s)} ( \underline {z}) \tilde \Lambda
\rangle = \langle \Lambda N_0 \tilde \Lambda \rangle = \langle \tilde I_{(s-1)}
\rangle $ if and only if the s-th row of $ \Lambda N _*^{(s)} (\underline {z}) \tilde \Lambda $ is identically zero. By construction, all entries of N *, and so the entries of $ \Lambda {\cal N}_*^{(s)} \tilde \Lambda $, are linear polynomials in Z.

 

(6.6) Note that the minor ideal need not to be reduced, as demonstrated by the following example:
Given $Q = \left(
\begin{array}{cc}
x & -y \\
y & x-2y
\end{array}
\right)
$, then a representative in the sense of (5.2) is given by

\begin{displaymath}\tilde{Q} = \left(
\begin{array}{ccc}
x & -y & 0\\
y & x-2y & x^2-2xy+y2
\end{array}
\right).
\end{displaymath}

None of the matrices of $I\!\!B_+$ increase $ {\cal M}(Q) $; that is, ${\cal N}^{(1)}_Q = \mbox{Mat}\,(1,1;K[[x,y]])$.
A generator is given by $U_T =
\left(
\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}
\right)
$, T=(1). Then $\tilde{T} =
\left(
\begin{array}{ccc}
0 & 1 & x+y\\
-1& 2 & x-y\\
0 & 0 & 0
\end{array}
\right)$, $\tilde{T}'_0 =
\left(
\begin{array}{cc}
0 & 1\\
-1 & 2
\end{array}
\right)$ and $ \tilde{T}''_0 =
\left(
\begin{array}{c}
0\\
0
\end{array}
\right)$. Thus $ N_* =
\left(
\begin{array}{cc}
1 & Z\\
-Z & 1+2Z
\end{array}
\right)$, and minor(N*) = (1+2Z+Z2) = (1+Z)2 is not reduced.


next up previous
Next: 7. Finiteness Up: Splitting algorithm for vector Previous: 5. Criteria for row-minimality
| ZCA Home | Reports |