next up previous
Next: Computing a basis for Up: Computational Aspects Previous: Computing the divisors


Computing $ \mathbf{F}$-bases of adjoint forms

Let Monom$ (m)=\{G_1,\dots,G_M\}$ denote the monomial $ \mathbf{F}$-basis for $ \mathbf{F}[X,Y,Z]_m$, resp. the corresponding vector of monomials. We represent a homogeneous form $ H\in \mathbf{F}[X,Y,Z]_m$ by the vector $ v\in
\mathbf{F}^n$ such that $ H=$Monom$ (m)^T\!\cdot v$. To compute $ \mathbf{F}$-bases of adjoint forms as needed by the Brill-Noether algorithm, we apply the following algorithm:


Input
$ F\in \mathbf{F}[X,Y,Z]_d$, $ L$ list of closed places of $ C$ (defined by $ F=0$), $ m>d$ a positive integer,
non-negative integers $ d_{[Q]}$, $ [Q]\in L$, s.th. $ \mathcal{A}=\sum_{[Q]} d_{[Q]}[Q]$,
non-negative integers $ n_{[Q]}$, $ [Q]\in L$, s.th. $ E=\sum_{[Q]} n_{[Q]}[Q]$.

Output
$ \mathbf{F}$-basis of a subspace of

$\displaystyle V:=\left\{ H\in
\mathbf{F}[X,Y,Z]_m\;\big\vert\; F \,\vert\,
H \text{ or } N^{\ast}H \geq {\mathcal{A}}+E\right\}$

complementary to $ W:=F\cdot \mathbf{F}[X,Y,Z]_{m-d}$ (given in form of a matrix of coefficients w.r.t. Monom$ (m)$).

  1. The subspace $ W\subset V$ of forms divisible by $ F$. Compute the matrix $ W\in Mat(\!\:\ell\times\!\!\:
M,\mathbf{F}\,)$ with $ W \cdot$   Monom$ (m)=F\cdot$   Monom$ (m\!\!\:-\!\!\:d)$.

    Note that $ \ell=\tbinom{m-d+2}{2}$, $ M=\tbinom{m+2}{2}$.

  2. The space $ V$. For each closed place $ [Q]$ with $ m_{[Q]}:=d_{[Q]}+n_{[Q]}>0$ do the following: Finally, concatenate the $ A_{[Q]}$ to obtain $ A\in Mat(\!\:K\!\times\!\!\: M,\mathbf{F}\,)$ with $ K=\sum_{[Q]}
k_Qm_{[Q]}$ and compute $ V$ as the kernel of $ A$, that is

    $\displaystyle V:=Ker(A)\in Mat(\!\:k\times\!\!\: M,\mathbf{F}\,)\,,
\qquad A\cdot V^T\!=0\,.$

  3. Compute a complement of $ W$ in $ V$. This can be done, for instance, by using the lift command in SINGULAR.


next up previous
Next: Computing a basis for Up: Computational Aspects Previous: Computing the divisors
Christoph Lossen
2001-03-21