next up previous
Next: Example Up: Computational Aspects Previous: Computing -bases of adjoint

Computing a basis for $ \mathcal{L}(G)$

Let $ G$ be any rational divisor on $ {\widetilde{C}}$. The algorithms of the preceding sections finally allow to compute an $ \mathbf{F}$-basis of $ \mathcal{L}(G)$ by the Brill-Noether Algorithm (cf. Prop. 2.7):


Input
$ F\in \mathbf{F}[X,Y,Z]_d$, $ L$ list of closed places of $ C=\{F\!\!\:=\!\!\:0\}$,
non-negative integers $ d_{[Q]}$, $ [Q]\in L$, s.th. $ \mathcal{A}=\sum_{[Q]} d_{[Q]}[Q]$,
integers $ g_{[Q]}$, $ [Q]\in L$, s.th. $ G=\sum_{[Q]} g_{[Q]}[Q]$.

Output
Vector space basis of $ \mathcal{L}(G)$ (in terms of rational functions on $ C$).

  1. Choose $ m$ sufficiently large (for instance, according to (3), above).
  2. Compute $ H_0\in \mathbf{F}[X,Y,Z]_m$, $ F
\not\vert\, H_0$, such that $ N^{\ast}H_0\geq
{\mathcal{A}}+G_{+}$. To do so, we compute an $ \mathbf{F}$-basis for a vector subspace of

    $\displaystyle V_0:=\left\{ H\in \mathbf{F}[X,Y,Z]_m\;\big\vert\; F \,\vert\,
H \text{ or } N^{\ast}H \geq {\mathcal{A}} +G_{+}\right\}\,, $

    complementary to $ W:=F\cdot \mathbf{F}[X,Y,Z]_{m-d}$ (cf. Section 2.4.4) and choose any element $ H_0$ of this basis (for instance, with the minimal number of monomials).

  3. Compute the effective divisor $ R:=N^{\ast}H_0\!-G-\mathcal{A}$ (cf. Section 2.4.3).
  4. Compute an $ \mathbf{F}$-basis $ H_1,\dots, H_s$ of a vector subspace of

    $\displaystyle V\,:=\, \left\{ H\in \mathbf{F}[X,Y,Z]_m\;\big\vert\; F \,\vert\,
H \text{ or
} N^{\ast}H \geq {\mathcal{A}} +R\right\} \,, $

    complementary to $ W=F\cdot \mathbf{F}[X,Y,Z]_{m-d}$ (cf. Section 2.4.4).

  5. Return the set of rational functions $ \mathcal{B}:=\left\{ \dfrac{H_1}{H_0},\dots,
\dfrac{H_s}{H_0}\right\}$.


next up previous
Next: Example Up: Computational Aspects Previous: Computing -bases of adjoint
Christoph Lossen
2001-03-21