next up previous
Next: Brieskorn lattice Up: V-filtration and spectral numbers Previous: Gauß-Manin connection

V-filtration

Since $ t^{\alpha-\frac{N}{2\pi i}}$ is invertible, $ \psi_\alpha(A):=(i_{*}s(A,\alpha))_0$ defines an inclusion $ \psi_{\alpha}:H^n(X^\infty,\mathbf{C})\hookrightarrow \mathcal{G}_0$, satisfying the relations $ \partial_t\psi_{\alpha}=
\psi_{\alpha-1}\bigl(\alpha-\frac{N}{2\pi i}\bigr)$ and $ t\psi_{\alpha}=\psi_{\alpha+1}$, by definition of $ s(A,\alpha)$. This implies $ (t\partial_t\!-\alpha)\psi_\alpha=\psi_\alpha\bigl(-\frac{N}{2\pi
i}\bigr)$, $ \exp(-2\pi i t\partial_t)\psi_\alpha=\psi_\alpha
M_\lambda$, and the image

$\displaystyle C_\alpha:=im\psi_\alpha\,=\,Ker\,(t\partial_t-\alpha)^{n+1}
$

of $ \psi_\alpha$ is the generalized $ \alpha$-eigenspace of $ t\partial_t$. Moreover, $ T:C_\alpha \to C_{\alpha+1}$ is bijective, and $ \partial_t:C_\alpha \to C_{\alpha-1}$ is bijective for $ \alpha\neq 0$. The V-filtration $ V$ on $ \mathcal{G}_0$ is defined by

$\displaystyle V^\alpha :=\, V^\alpha\mathcal{G}_0 \,:=\,
\sum_{\alpha\le\beta}{...
...alpha}\mathcal{G}_0 \,:=\,
\sum_{\alpha<\beta}{\mathbf{C}\{t\}} \cdot C_\beta.
$

$ V^\alpha$ and $ V^{>\alpha}$ are free $ {\mathbf{C}\{t\}}$-modules of rank $ \mu$ with $ V^\alpha\big/V^{>\alpha}\cong C_\alpha$.



Christoph Lossen
2001-03-21