next up previous
Next: Computing the normalization Up: Normalization algorithm Previous: Normalization algorithm

Computing the non-normal locus

Input
$ f_1, \dots, f_k \in S=K[x_1, \dots, x_n]$, $ \;I :=
\langle f_1, \dots, f_k\rangle$.
We assume that $ I$ is a radical ideal.
Output
Generators for $ I_{\text{\it NN}}$ such that $ V(I_{\text{\it NN}}) = NN(S/I)$.

  1. Compute an ideal $ I_{Sing}$ as described in Sect. [*].
  2. Compute a non-zerodivisor $ u \in I_{Sing}$: choose an $ S$-linear combination $ u$ of the generators of $ I_{Sing}$ and test if $ (I : u) := \bigl\{g \in S
\:\big\vert\: gu \in I\bigr\}$ is zero, by using that $ u$ is a non-zerodivisor iff $ (I : u) = 0$.

    A sufficiently general linear combination gives a non-zerodivisor.

  3. Compute a test ideal $ J$, e.g., $ J=\sqrt{\langle
u,I\rangle}$ or $ J=\sqrt{I_{Sing}}$.
  4. Compute generators $ g_1, \dots, g_\ell$ for $ \langle
u,I\rangle\!\!\::\!\!\:\bigl((u
J\!\!\:+\!\!\:I)\!\!\::\!\!\:J\bigr)$ as $ S$-module.
  5. Return $ \{g_1, \dots, g_\ell\}$.



Christoph Lossen
2001-03-21