... Reinert1
The author was supported by the Deutsche Forschungsgemeinschaft (DFG).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... admissible2
A partial ordering $\succeq$ on $\Sigma^*$ is called admissible if for all u,v,x,y in $\Sigma^*$ we have $u \succeq \lambda$, and $u \succ v$ implies $xuy \succ xvy$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... well-founded3
A partial ordering $\succeq$ on $\Sigma^*$ is called well-founded if no infinite chains of the form $x_1 \succ x_2 \succ \ldots$ with $x_i \in \Sigma^*$ are possible.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... fair4
A fair strategy will ensure that all elements of the set B are considered at some time by the procedure.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
These polynomials are frequently called s-polynomials in the literature.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...${\sf ideal}_{r}^{}(F) = \{
\sum_{i=1}^n \alpha_i \cdot f_i \ast w_i \mid n \in {\bf N}, \alpha_i \in
{\bf K}, f_i \in F, w_i \in {\cal M}\}$5
${\bf N}$ denotes the natural numbers including 0.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... closure6
The normal closure of a set T in ${\cal F}_{\Sigma}$ is the smallest normal subgroup containing T.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... none7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
By theorem 6 the existence of such finite bases would solve the word problem for groups presented by finite string rewriting systems.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
| ZCA Home | Reports |